Skip to content

Simulator

Simulator

Source code in sim/simulator.py
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
class Simulator:
    def __init__(self):
        self.registers = Registers()
        self.memory = Memory()
        self.assembler = Assembler()
        self.current_pc = 0
        self.program_loaded = False
        self.program_length = 0
        self.debug_mode = False
        self.execution_history = []

    def load(self, program, translation_option='binary'):
        """Load and assemble program from string"""
        # Returns: Translated binary code as default
        self.registers.reset()
        self.memory.reset()
        self.current_pc = 0
        self.registers.pc = 0
        self.execution_history.clear()

        machine_code = self.assembler.assemble(program)

        for i, instruction in enumerate(machine_code):
            self.memory.load_instruction(i, instruction)

        self.program_length = len(machine_code)
        self.program_loaded = True

        translations = self.assembler.get_translations(translation_option)
        result = '\n'.join(translations)
        return result

    def load_from_file(self, filename):
        """Load and assemble program from file"""
        with open(filename, 'r') as f:
            program = f.read()

        return self.load(program)

    def step(self):
        """Execute single instruction and return detailed state"""
        # Returns: Status KV pair from the step executed
        if not self.program_loaded:
            return {
                'status': 'error',
                'message': 'No program loaded',
                'state': self.get_state()
            }

        if self.registers.pc >= self.program_length * 4:
            return {
                'status': 'completed',
                'message': 'Program completed - reached end of instructions',
                'state': self.get_state()
            }

        instruction = self.memory.get_instruction(self.registers.pc)
        if instruction == 0:
            return {
                'status': 'halted',
                'message': 'Program halted - reached null instruction',
                'state': self.get_state()
            }

        # Record pre-execution state
        old_pc = self.registers.pc
        pre_state = self.get_register_state()

        # Execute instruction
        continue_execution = self.execute_instruction(instruction)

        # Record execution in history
        instruction_info = self._get_instruction_info(instruction)
        execution_record = {
            'pc': old_pc,
            'instruction': f"0x{instruction:08x}",
            'instruction_info': instruction_info,
            'pre_state': pre_state,
            'post_state': self.get_register_state()
        }
        self.execution_history.append(execution_record)

        # Update PC if needed
        if continue_execution:
            self.registers.pc += 4
            self.current_pc = self.registers.pc

        result = {
            'status': 'running',
            'pc': self.registers.pc,
            'previous_pc': old_pc,
            'instruction': f"0x{instruction:08x}",
            'instruction_info': instruction_info,
            'state': self.get_state(),
            'message': 'Instruction executed successfully'
        }

        if self.debug_mode:
            self._print_step_debug(result)

        return result

    def run(self):
        """Run the program with detailed execution tracking"""
        # Returns: Status KV pair from the whole program
        if not self.program_loaded:
            return {
                'status': 'error',
                'message': 'No program loaded',
                'execution_history': self.execution_history
            }

        print("\nStarting program execution...")
        instruction_count = 0
        max_iterations = 1000000  # Prevent infinite loops
        execution_results = []

        while instruction_count < max_iterations:
            step_result = self.step()
            execution_results.append(step_result)

            if step_result['status'] in ['completed', 'halted', 'error']:
                break

            instruction_count += 1

        final_result = {
            'status': 'completed',
            'instructions_executed': instruction_count,
            'execution_results': execution_results,
            'final_state': self.get_state(),
            'message': f"Program execution completed with {instruction_count} instructions"
        }

        if instruction_count >= max_iterations:
            final_result.update({
                'status': 'error',
                'message': 'Program terminated - reached maximum instruction limit'
            })

        if self.debug_mode:
            self._print_run_debug(final_result)

        return final_result

    def get_state(self):
        """Get current simulator state"""
        return {
            'pc': self.registers.pc,
            'registers': self.get_register_state(),
            'memory': self.get_memory_state(),
            'history': self.execution_history,
            'reg_labels': self.get_register_state(label=True)
        }

    def get_register_state(self, label=False):
        """Get register contents with sign extension using register names as keys"""
        register_state = {}
        for i in range(32):
            value = self.registers.read_register(i)
            # Convert 2's complement to signed
            if value & 0x80000000:  # If negative (MSB is 1)
                value = -((~value + 1) & 0xFFFFFFFF)
            if label:
                register_state[self.registers.get_register_name(i)] = value
            else:
                register_state[i] = value
        return register_state

    def get_memory_state(self):
        """Get memory contents"""
        return {
            'instructions': self.memory.read_instruction_memory(),
            'data': self.memory.read_data_memory()
        }

    def execute_r_type(self, instruction, rs, rt, rd, shamt, funct):
        """Handle R-type instructions"""
        rs_val = self.registers.read_register(rs)
        rt_val = self.registers.read_register(rt)

        if funct == 0x20:  # add
            result = (rs_val + rt_val) & 0xFFFFFFFF  # Add truncation
            self.registers.write_register(rd, result)
        elif funct == 0x22:  # sub
            result = (rs_val - rt_val) & 0xFFFFFFFF  # Add truncation
            self.registers.write_register(rd, result)
        elif funct == 0x24:  # and
            result = rs_val & rt_val
            self.registers.write_register(rd, result)
        elif funct == 0x25:  # or
            result = rs_val | rt_val
            self.registers.write_register(rd, result)
        elif funct == 0x2A:  # slt
            # Sign comparison for SLT
            rs_signed = rs_val if rs_val < 0x80000000 else rs_val - 0x100000000
            rt_signed = rt_val if rt_val < 0x80000000 else rt_val - 0x100000000
            result = 1 if rs_signed < rt_signed else 0
            self.registers.write_register(rd, result)
        elif funct == 0x00:  # sll
            result = (rt_val << shamt) & 0xFFFFFFFF
            self.registers.write_register(rd, result)
        elif funct == 0x02:  # srl
            result = (rt_val >> shamt) & 0xFFFFFFFF
            self.registers.write_register(rd, result)
        elif funct == 0x08:  # jr
            self.current_pc = rs_val
            self.registers.pc = self.current_pc
            return False
        return True

    def execute_i_type(self, op, rs, rt, imm):
        """Handle I-type instructions"""
        rs_val = self.registers.read_register(rs)

        # Sign extend immediate value
        if imm & 0x8000:
            imm |= 0xFFFF0000

        if op == 0x08:  # addi
            result = (rs_val + imm) & 0xFFFFFFFF
            self.registers.write_register(rt, result)

        elif op == 0x23:  # lw
            addr = (rs_val + imm) & 0xFFFFFFFF
            value = self.memory.read_word(addr)
            self.registers.write_register(rt, value)

        elif op == 0x2B:  # sw
            addr = (rs_val + imm) & 0xFFFFFFFF
            rt_val = self.registers.read_register(rt)
            self.memory.write_word(addr, rt_val)

        elif op == 0x04:  # beq
            rt_val = self.registers.read_register(rt)
            if rs_val == rt_val:
                target = self.registers.pc + 4 + (imm << 2)
                self.current_pc = target
                self.registers.pc = target
                return False

        elif op == 0x05:  # bne
            rt_val = self.registers.read_register(rt)
            if rs_val != rt_val:
                target = self.registers.pc + 4 + (imm << 2)
                self.current_pc = target
                self.registers.pc = target
                return False

        return True

    def execute_j_type(self, op, address):
        """Handle J-type instructions"""      
        if op == 0x02:  # j
            target = (self.registers.pc & 0xF0000000) | (address << 2)
            self.current_pc = target
            self.registers.pc = target
            return False

        elif op == 0x03:  # jal
            target = (self.registers.pc & 0xF0000000) | (address << 2)
            self.registers.write_register(31, self.registers.pc + 4)  # Store return address
            self.current_pc = target
            self.registers.pc = target
            return False

        return True

    def execute_instruction(self, instruction):
        """Execute a single instruction"""
        # Extract operation fields
        op = (instruction >> 26) & 0x3F
        rs = (instruction >> 21) & 0x1F
        rt = (instruction >> 16) & 0x1F
        rd = (instruction >> 11) & 0x1F
        shamt = (instruction >> 6) & 0x1F
        funct = instruction & 0x3F
        imm = instruction & 0xFFFF
        address = instruction & 0x3FFFFFF

        # Handle instruction based on type
        if op == 0:  # R-type
            return self.execute_r_type(instruction, rs, rt, rd, shamt, funct)
        elif op in [0x02, 0x03]:  # J-type
            return self.execute_j_type(op, address)
        else:  # I-type
            return self.execute_i_type(op, rs, rt, imm)

    def _get_instruction_info(self, instruction):
        """Decode and return instruction information"""
        op = (instruction >> 26) & 0x3F
        rs = (instruction >> 21) & 0x1F
        rt = (instruction >> 16) & 0x1F
        rd = (instruction >> 11) & 0x1F
        shamt = (instruction >> 6) & 0x1F
        funct = instruction & 0x3F
        imm = instruction & 0xFFFF
        address = instruction & 0x3FFFFFF

        return {
            'opcode': f"0x{op:02x}",
            'type': 'R-type' if op == 0 else 'J-type' if op in [0x02, 0x03] else 'I-type',
            'fields': {
                'rs': f"${rs} ({self.registers.get_register_name(rs)})",
                'rt': f"${rt} ({self.registers.get_register_name(rt)})",
                'rd': f"${rd} ({self.registers.get_register_name(rd)})",
                'shamt': shamt,
                'funct': f"0x{funct:02x}",
                'immediate': f"0x{imm:04x}",
                'address': f"0x{address:07x}"
            }
        }

    def _print_step_debug(self, result):
        """Print debug information for step execution"""
        print("\nInstruction Execution Details:")
        print(f"PC: 0x{result['pc']:08x} (Previous: 0x{result['previous_pc']:08x})")
        print(f"Instruction: {result['instruction']}")
        print("\nInstruction Info:")
        info = result['instruction_info']
        print(f"Type: {info['type']}")
        print(f"Opcode: {info['opcode']}")
        print("\nFields:")
        for field, value in info['fields'].items():
            print(f"  {field}: {value}")

        if self.debug_mode == 2:  # More detailed debug level
            print("\nRegister Changes:")
            pre_state = result['state']['history'][-1]['pre_state']
            post_state = result['state']['history'][-1]['post_state']
            for reg in range(32):
                if pre_state[reg] != post_state[reg]:
                    reg_name = self.registers.get_register_name(reg)
                    print(f"  ${reg} ({reg_name}): 0x{pre_state[reg]:08x} -> 0x{post_state[reg]:08x}")

    def _print_run_debug(self, result):
        """Print debug information for complete program execution"""
        print("\nProgram Execution Summary:")
        print(f"Status: {result['status']}")
        print(f"Instructions Executed: {result['instructions_executed']}")
        print(f"Message: {result['message']}")

        if self.debug_mode == 2:  # More detailed debug level
            print("\nFinal Register State:")
            for reg in range(32):
                reg_name = self.registers.get_register_name(reg)
                value = result['final_state']['registers'][reg]
                print(f"  ${reg} ({reg_name}): 0x{value:08x}")

            print("\nNon-Zero Memory Contents:")
            for addr, value in result['final_state']['memory']['data'].items():
                if value != 0:
                    print(f"  [0x{int(addr):08x}]: 0x{value:08x}")

    def _print_info(self):
        """Print the current state of registers and memory"""
        reg_state = self.get_register_state()
        print("\nRegister Contents:")
        for reg_num, value in reg_state.items():
            print(f"{self.registers.get_register_name(reg_num)}: {value}")

        print("\nInstruction Memory Contents:")
        for i, instruction in enumerate(self.memory.instruction_memory):
            if instruction != 0:  # Only print non-zero instructions
                print(f"[0x{i*4:04x}] 0x{instruction:08x}")

        print("\nData Memory Contents:")
        for i, data in enumerate(self.memory.data_memory):
            if data != 0:  # Only print non-zero data
                print(f"{i}[0x{i*4:04x}] 0x{data:08x}")

execute_i_type(op, rs, rt, imm)

Handle I-type instructions

Source code in sim/simulator.py
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def execute_i_type(self, op, rs, rt, imm):
    """Handle I-type instructions"""
    rs_val = self.registers.read_register(rs)

    # Sign extend immediate value
    if imm & 0x8000:
        imm |= 0xFFFF0000

    if op == 0x08:  # addi
        result = (rs_val + imm) & 0xFFFFFFFF
        self.registers.write_register(rt, result)

    elif op == 0x23:  # lw
        addr = (rs_val + imm) & 0xFFFFFFFF
        value = self.memory.read_word(addr)
        self.registers.write_register(rt, value)

    elif op == 0x2B:  # sw
        addr = (rs_val + imm) & 0xFFFFFFFF
        rt_val = self.registers.read_register(rt)
        self.memory.write_word(addr, rt_val)

    elif op == 0x04:  # beq
        rt_val = self.registers.read_register(rt)
        if rs_val == rt_val:
            target = self.registers.pc + 4 + (imm << 2)
            self.current_pc = target
            self.registers.pc = target
            return False

    elif op == 0x05:  # bne
        rt_val = self.registers.read_register(rt)
        if rs_val != rt_val:
            target = self.registers.pc + 4 + (imm << 2)
            self.current_pc = target
            self.registers.pc = target
            return False

    return True

execute_instruction(instruction)

Execute a single instruction

Source code in sim/simulator.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def execute_instruction(self, instruction):
    """Execute a single instruction"""
    # Extract operation fields
    op = (instruction >> 26) & 0x3F
    rs = (instruction >> 21) & 0x1F
    rt = (instruction >> 16) & 0x1F
    rd = (instruction >> 11) & 0x1F
    shamt = (instruction >> 6) & 0x1F
    funct = instruction & 0x3F
    imm = instruction & 0xFFFF
    address = instruction & 0x3FFFFFF

    # Handle instruction based on type
    if op == 0:  # R-type
        return self.execute_r_type(instruction, rs, rt, rd, shamt, funct)
    elif op in [0x02, 0x03]:  # J-type
        return self.execute_j_type(op, address)
    else:  # I-type
        return self.execute_i_type(op, rs, rt, imm)

execute_j_type(op, address)

Handle J-type instructions

Source code in sim/simulator.py
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def execute_j_type(self, op, address):
    """Handle J-type instructions"""      
    if op == 0x02:  # j
        target = (self.registers.pc & 0xF0000000) | (address << 2)
        self.current_pc = target
        self.registers.pc = target
        return False

    elif op == 0x03:  # jal
        target = (self.registers.pc & 0xF0000000) | (address << 2)
        self.registers.write_register(31, self.registers.pc + 4)  # Store return address
        self.current_pc = target
        self.registers.pc = target
        return False

    return True

execute_r_type(instruction, rs, rt, rd, shamt, funct)

Handle R-type instructions

Source code in sim/simulator.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def execute_r_type(self, instruction, rs, rt, rd, shamt, funct):
    """Handle R-type instructions"""
    rs_val = self.registers.read_register(rs)
    rt_val = self.registers.read_register(rt)

    if funct == 0x20:  # add
        result = (rs_val + rt_val) & 0xFFFFFFFF  # Add truncation
        self.registers.write_register(rd, result)
    elif funct == 0x22:  # sub
        result = (rs_val - rt_val) & 0xFFFFFFFF  # Add truncation
        self.registers.write_register(rd, result)
    elif funct == 0x24:  # and
        result = rs_val & rt_val
        self.registers.write_register(rd, result)
    elif funct == 0x25:  # or
        result = rs_val | rt_val
        self.registers.write_register(rd, result)
    elif funct == 0x2A:  # slt
        # Sign comparison for SLT
        rs_signed = rs_val if rs_val < 0x80000000 else rs_val - 0x100000000
        rt_signed = rt_val if rt_val < 0x80000000 else rt_val - 0x100000000
        result = 1 if rs_signed < rt_signed else 0
        self.registers.write_register(rd, result)
    elif funct == 0x00:  # sll
        result = (rt_val << shamt) & 0xFFFFFFFF
        self.registers.write_register(rd, result)
    elif funct == 0x02:  # srl
        result = (rt_val >> shamt) & 0xFFFFFFFF
        self.registers.write_register(rd, result)
    elif funct == 0x08:  # jr
        self.current_pc = rs_val
        self.registers.pc = self.current_pc
        return False
    return True

get_memory_state()

Get memory contents

Source code in sim/simulator.py
180
181
182
183
184
185
def get_memory_state(self):
    """Get memory contents"""
    return {
        'instructions': self.memory.read_instruction_memory(),
        'data': self.memory.read_data_memory()
    }

get_register_state(label=False)

Get register contents with sign extension using register names as keys

Source code in sim/simulator.py
166
167
168
169
170
171
172
173
174
175
176
177
178
def get_register_state(self, label=False):
    """Get register contents with sign extension using register names as keys"""
    register_state = {}
    for i in range(32):
        value = self.registers.read_register(i)
        # Convert 2's complement to signed
        if value & 0x80000000:  # If negative (MSB is 1)
            value = -((~value + 1) & 0xFFFFFFFF)
        if label:
            register_state[self.registers.get_register_name(i)] = value
        else:
            register_state[i] = value
    return register_state

get_state()

Get current simulator state

Source code in sim/simulator.py
156
157
158
159
160
161
162
163
164
def get_state(self):
    """Get current simulator state"""
    return {
        'pc': self.registers.pc,
        'registers': self.get_register_state(),
        'memory': self.get_memory_state(),
        'history': self.execution_history,
        'reg_labels': self.get_register_state(label=True)
    }

load(program, translation_option='binary')

Load and assemble program from string

Source code in sim/simulator.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
def load(self, program, translation_option='binary'):
    """Load and assemble program from string"""
    # Returns: Translated binary code as default
    self.registers.reset()
    self.memory.reset()
    self.current_pc = 0
    self.registers.pc = 0
    self.execution_history.clear()

    machine_code = self.assembler.assemble(program)

    for i, instruction in enumerate(machine_code):
        self.memory.load_instruction(i, instruction)

    self.program_length = len(machine_code)
    self.program_loaded = True

    translations = self.assembler.get_translations(translation_option)
    result = '\n'.join(translations)
    return result

load_from_file(filename)

Load and assemble program from file

Source code in sim/simulator.py
43
44
45
46
47
48
def load_from_file(self, filename):
    """Load and assemble program from file"""
    with open(filename, 'r') as f:
        program = f.read()

    return self.load(program)

run()

Run the program with detailed execution tracking

Source code in sim/simulator.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def run(self):
    """Run the program with detailed execution tracking"""
    # Returns: Status KV pair from the whole program
    if not self.program_loaded:
        return {
            'status': 'error',
            'message': 'No program loaded',
            'execution_history': self.execution_history
        }

    print("\nStarting program execution...")
    instruction_count = 0
    max_iterations = 1000000  # Prevent infinite loops
    execution_results = []

    while instruction_count < max_iterations:
        step_result = self.step()
        execution_results.append(step_result)

        if step_result['status'] in ['completed', 'halted', 'error']:
            break

        instruction_count += 1

    final_result = {
        'status': 'completed',
        'instructions_executed': instruction_count,
        'execution_results': execution_results,
        'final_state': self.get_state(),
        'message': f"Program execution completed with {instruction_count} instructions"
    }

    if instruction_count >= max_iterations:
        final_result.update({
            'status': 'error',
            'message': 'Program terminated - reached maximum instruction limit'
        })

    if self.debug_mode:
        self._print_run_debug(final_result)

    return final_result

step()

Execute single instruction and return detailed state

Source code in sim/simulator.py
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def step(self):
    """Execute single instruction and return detailed state"""
    # Returns: Status KV pair from the step executed
    if not self.program_loaded:
        return {
            'status': 'error',
            'message': 'No program loaded',
            'state': self.get_state()
        }

    if self.registers.pc >= self.program_length * 4:
        return {
            'status': 'completed',
            'message': 'Program completed - reached end of instructions',
            'state': self.get_state()
        }

    instruction = self.memory.get_instruction(self.registers.pc)
    if instruction == 0:
        return {
            'status': 'halted',
            'message': 'Program halted - reached null instruction',
            'state': self.get_state()
        }

    # Record pre-execution state
    old_pc = self.registers.pc
    pre_state = self.get_register_state()

    # Execute instruction
    continue_execution = self.execute_instruction(instruction)

    # Record execution in history
    instruction_info = self._get_instruction_info(instruction)
    execution_record = {
        'pc': old_pc,
        'instruction': f"0x{instruction:08x}",
        'instruction_info': instruction_info,
        'pre_state': pre_state,
        'post_state': self.get_register_state()
    }
    self.execution_history.append(execution_record)

    # Update PC if needed
    if continue_execution:
        self.registers.pc += 4
        self.current_pc = self.registers.pc

    result = {
        'status': 'running',
        'pc': self.registers.pc,
        'previous_pc': old_pc,
        'instruction': f"0x{instruction:08x}",
        'instruction_info': instruction_info,
        'state': self.get_state(),
        'message': 'Instruction executed successfully'
    }

    if self.debug_mode:
        self._print_step_debug(result)

    return result